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Overview

Based on my paper arXiv:2506.14325.

Extended result of the 2013 paper “The Conley-Zehnder indices of

the rotating Kepler problem” by P. Albers, J. Fish, U. Frauenfelder

and O. van Koert. (dim 2 → dim 3)

Result 1. Description of the moduli space of periodic Kepler orbits

using angular momentum and Laplace-Runge-Lenz vector.

Result 2. Computation of Conley-Zehnder indices of periodic Kepler

orbits.

Dongho Lee July 17, 2025 1/23



Kepler Problem

Rotating Kepler problem is defined by Hamiltonian

H = E + L3 =
1

2
|p|2 − 1

|q|
+ (q1p2 − q2p1).

H : Jacobi energy (usually, H = c)

E : Kepler energy.

Motivation: a limit of the circular restricted three-body problem
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Kepler’s Laws

In 17th century, Kepler established these three laws. Let E < 0.

1. E-orbits are ellipses with one focus at the origin.

2. The angular momentum is a conserved quantity.

3. The period τ is given by

τ2 =
π2

(−2E)3
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Two Invariants

1. Angular momentum L = q × p.

Direction of L = Normal to the plane which the orbit contained in.

2. Laplace-Runge-Lenz vector A = p× L− q
|q|

Direction of A = Direction of the major axis

Some relations :

1. {E,Li} = {E,Aj} = 0 for any i, j.

2. {Li, Aj} = εijkAk. In particular, {Li, Ai} = 0

3. Eccentricity: ε2 = |A|2 = 2E|L|2 + 1.
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Two Invariants

On L · q, an E-orbit is given in the polar coordinate by

r =
|L|2

1 + |A| cos(θ − g)
(g is determined by the direction of A).

In particular, E, L and A determine the Kepler orbit.
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Moser Regularization

For H < −3/2, we can embed the Hamiltonian flow on the level set

H−1(c) into the unit Finsler geodesic flow on T ∗S3. [CFvK14]

⇒ Compactification of the energy level set by ST ∗S3 ' S3 × S2.

The collision orbits are added. (ε = |A| = 1, L = 0.)

q1

q2
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Nondegenerate Periodic Orbits

FlXL3 is a rotation along q3- and p3-axis of period 2π,

and FlXH = FlXE ◦ FlXL3 .

These are periodic after composing with FlXL3 .
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Nondegenerate Periodic Orbits

Circular condition: ε2 = 2EL2
3 + 1 = 2E(c− E)2 + 1 = 0.

For fixed c < −3/2, there are 3 planar circular orbits with different E.

1. Retrograde orbit γ+: L3 > 0, smaller E and smaller radius.

2. Direct orbit γ−: L3 < 0, larger E and larger radius.

3. The rest one, outer direct orbit, lies on the unbounded component,

and not of our interest (discarded during regularization).

Vertical collision orbits γc± : L = 0, A3 = ∓1, c = E.

They do not appear in the planar problem.
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Morse-Bott Family

For other cases, the periods of E-orbit and L3-orbit must be the same.

τ = 2π/(−2E)3/2 ⇒ there exists some k, l ∈ Z such that

kτ =
2kπ

(−2E)3/2
= 2lπ ⇒ Ek,l = −1

2

(
k

l

)2/3

For given c, only orbits with Kepler energy Ek,l can be periodic.

Such orbits appear with Morse-Bott S3-family Σk,l. (will be explained)

Note. We have S1-families in the planar problem.
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Morse-Bott Family
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Morse-Bott Family
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Moduli Space

Recall. E,L and A characterizes the Kepler orbit.

Denote x =
√
−2EL−A, y =

√
−2EL+A.

⇒ |x|2 = |y|2 = −2E|L|2 + |A|2 = 1.

The moduli space of the Kepler orbits with Kepler energy E is

ME =
{

(x, y) : |x|2 = |y|2 = 1
}
' S2 × S2.

(Space of unit geodesics of S3) = ST ∗S3/S1 ' S2 × S2.

Note. In the planar problem, the moduli space is RP3/S1 ' S2.
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Properties of ME

L3 = (x3 + y3)/
√
−2E serves as a Morse function with 4 critical points.

1. 4 nondegenerate orbits corresponds to the critical points.

(0, 0,±1; 0, 0,±1)

2. Every regular level set of L3 is S3. (Handle attachment)

⇒ Morse-Bott family Σk,l is topologically S3.

(For fixed c, if E = Ek,l, then L3 = c− Ek,l is specified.)
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Properties of ME
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Periodic Orbits in H−1(c)

For generic energy level c, the energy hypersurface H−1(c) contains 4

nondegenerate orbits and (infinitely many) Morse-Bott S3-families.
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Conley-Zehnder Index of Planar Circular Orbits

Theorem
Let γ± be the retrograde and direct orbits of Kepler energy E where

E 6= Ek,l for any k, l. Then γ± and their multiple covers are

non-degenerate. The Conley-Zehnder index of N -th iterate of γ± is

µCZ(γN± ) = 2 + 4 max

{
n ∈ Z>0 : n < N

(−2E)3/2

(−2E)3/2 ± 1

}
= 2 + 4

⌊
N

(−2E)3/2

(−2E)3/2 ± 1

⌋

The index is exactly the twice compare to the planar problem, which was

computed in [AFFvK13].
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Conley-Zehnder Index of Planar Circular Orbits
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The index of γN± is initially 4N ∓ 2, and changes by ∓4 whenever µ±
touches k/N ⇔ E = EN∓k,k. (Bifurcation occurs)
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Conley-Zehnder Index of Vertical Collision Orbits

Theorem
Let γc± be the vertical collision orbits of Kepler energy E where

E 6= Ek,l for any k, l. Then γc± and their multiple covers are

non-degenerate. The Conley-Zehnder index of N -th iteration of γc± is

µCZ(γNc±) = 4N.

In particular, change of the energy does not change the index.
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Interpretation by Symplectic Homology

SH+,S1

∗ (T ∗S3;Q) '


Q ∗ = 2,

Q2 ∗ = 2k ≥ 4,

0 otherwise.

For fixed N , there exists c� −3/2 such that H−1(c) consists of

1. k(≤ N)-th covers of γ± of index 4k ∓ 2. (No bifucation)

2. Higher covers have index > 4N + 2.

Up to degree 4N + 2, we have

1. One generator at degree 2. (γ+.)

2. Two generators at degree 6, 10, 14, · · · , 4N + 2. (γk+1
+ and γk−.)

3. Two generators at degree 4, 8, 12, · · · , 4N . (γkc+ and γkc− .)

This describes SH+,S1

∗ (T ∗S3) up to degree 4N + 2 completely.
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Morse-Bott Property

Σk,l-families: We use Morse-Bott spectral sequence.

⇒ We need Morse-Bott property (kind of non-degeneracy), and must

compute the linearized return map.

We should use two action-angle coordinates:

1. Delaunay coordinate : (pl, pg, pθ) = (1/
√
−2E, |L|, L3).

Works for planar problem ([AFFvK13]), but degenerates at every

planar orbit in the spatial case.

2. LRL coordinate : (pl, pη, pθ) = (1/
√
−2E,A3, L3).

Also degenerates at some orbits, but covers planar orbits.
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Robbin-Salamon Index of Degenerate Orbits

Theorem

Index of S3-family Σk,l with Kepler energy Ek,l is

µRS(Σk,l) = shift(Σ) + dimS3/2

= (4k − 2) + 3/2 = 4k − 1/2.
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Conley-Zehnder Index of Degenerate Orbits

Previous results + local invariance of the symplectic homology
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Further Directions

1. Compute the indices for other related problems. (Spatial Euler

problem, Hill’s lunar problem, etc.)

2. Investigate the bifurcation behavior of other problems.

3. Application to the three-body problem, as a perturbation of the

Kepler problem.

Dongho Lee July 17, 2025 23/23



Thank you for your attention!


